Effect of Ethanol Leaf extract of *Chromolaena odorata* on hepatic markers in streptozotocin-induced diabetic wistar albino rats.

Okechukwu P. C. Ugwu¹, Emmanuel I. Obeagu¹, Esther Ugo Alum¹,², Michael Ben Okon¹, Patrick M. Aja², Mariam Oyedeji Amusa³, Adeyinka Olufemi Adepoju⁴ and Awotunde Oluwasegun Samson⁵

¹Department of Publications and Extension, Kampala International University, P. O. Box 20000, Uganda.
²Department of Biochemistry, Faculty of Science, Ebonyi State University, PMB 053, Abakaliki, Ebonyi State, Nigeria.
³Department of Botany and Plant Biotechnology, University of Johannesburg, South Africa.
⁴Research Institute for Innovations, AME University, Monrovia, Liberia.
⁵Department of Medical Biochemistry and molecular Genetics University of Rwanda, Huye Campus, Butare, Rwanda.

*Corresponding author: Ugwu Okechukwu Paul-Chima; Email: uguwuopc@kiu.ac.ug

ABSTRACT

Chromolaena odorata is one of the medicinal plants that have served all through the ages as the mainstay in the treatment and preservation of human health. This research was designed to determine the effect of ethanol leaf extract of *Chromolaena odorata* on hepatic markers (ALT, ALP, AST, GGT and bilirubin) in streptozotocin-induced diabetic wistar albino rats. All chemicals and reagents used in this study were of analytical grade. Diabetes was induced through intraperitoneal injection of streptozotocin (STZ) single dose of 70mg/kg body weight (b.w). Forty eight (48) rats were randomly distributed into six (6) groups of 8 rats each as follows: Group 1 were diabetic rats that were given 0.5ml normal saline, rats in group 2 were diabetic rats treated with 0.5mg glibenclamide, rats in group 3 were neither induced nor treated while rats in groups 4-6 were diabetic rats treated with graded doses of 250 mg/kg, 350mg/kg and 450mg/kg b.w of ethanol leaf extract of *Chromolaena odorata*, respectively. Blood glucose level and hepatic markers were assayed using standard biochemical methods. The study lasted for 21 days. After an overnight fast, blood samples were collected from the animals after anaesthesia via cardiac puncture. STZ injection led to increase in glucose and bilirubin levels as well as the activities of ALT, ALP, AST and GGT. Interestingly, rats in groups 4, 5 and 6 treated with graded doses of 250 mg/kg, 350mg/kg and 450mg/kg b.w of ethanol leaf extract of *Chromolaena odorata* recorded significant (p<0.05) decrease in the activities of these enzymes and level of bilirubin when compared with the positive control rats (group 1). Also, there were no significant differences (p>0.05) when group 3 rats (normal rats) and group 2 (treated with glibenclamide) were compared with groups 4-6 rats treated with graded doses of ethanol extract extracts group. In conclusion, the results from this research indicated that ethanol leaf extract of *Chromolaena odorata* lowered the activities of liver enzymes and level of bilirubin in STZ-induced diabetic wistar albino rats. The findings in this study suggest that *Chromolaena odorata* ethanol root extract possess hepatoprotective potentials and hence can be used to ameliorate hepatic dysfunction-associated diseases. Further study is however advocated to unravel the mechanism of action of this plant.

Keywords: *Chromolaena odorata*, medicinal plants, streptozotocin, Diabetes mellitus, hepatic markers.

INTRODUCTION

The importance of medicinal plants in traditional and modern medicines cannot be over-estimated. Medicinal plants serve as important sources of new chemical compounds with potential therapeutic effects [1]. World Health Organization has
Ugwu et al
advocated traditional medicine as safe remedies for management of various ailments [2]. Plants are major source of therapeutic compounds and are the essential foundation of medicine since prehistoric time. Herbal and natural products have been used in folk medicine for centuries throughout the world [2]. Medicinal plants are able to provide therapeutic effects due to the various chemical compounds inherent in them [3]. Several reports on different pharmacological roles of some medicinal plants are documented such as antioxidant [4], anti-inflammatory [5], antidiabetic [6,7], anticancer [8], hepatoprotective [9-11], antibacterial [12], antimalarial [13,14], lipid-lowering and cardioprotective [15,16].

Diabetes mellitus (DM) is a metabolic disorder resulting from a defect in insulin action, insulin secretion or both [17]. Insulin deficiency leads to chronic hyperglycemia with disturbances in fat, carbohydrate and protein metabolism. It is a global menace; with varying prevalence rate from country to country. However, India, China and United States of America (USA) are the top three countries in terms of number of diabetic patients [18]. Some factors like ageing, consumption of calorie-rich diet, obesity and sedentary lifestyle contribute to tremendous increase in the number of diabetics worldwide [17]. There are two main types of DM: type 1 and type 2, each with distinct pathogenesis [19]. However, the common feature to both is hyperglycemia and various life threatening complications [19, 20]. Type 1 diabetes mellitus is caused by insulin deficiency due to autoimmune destruction of pancreatic β-cells. Destruction of pancreatic β-cells progresses to absolute deficiency in insulin. This condition develops rapidly in young people and had been found to occur in any age group [21]. Note that, pancreatic β-cells destruction involves autoimmune mechanisms; hence, type 1 DM is also known as autoimmune type 1 diabetes mellitus. Type 2 diabetes also known as non-insulin dependent or adult-onset is characterized by insulin resistance in the peripheral tissue and an insulin secretory defect of the β-cell. This is the most common form of DM and is highly associated with a family history of diabetes, old age, obesity and lack of exercise [22]. It is more common in women, especially women with a history of gestational diabetes. Type 2 diabetes is characterized by derangement of carbohydrate, protein and fat metabolism [23]. Insulin resistance and hyperinsulinemia eventually leads to impaired glucose tolerance [22]. Diabetes mellitus is associated with an increased risk of cardiovascular and hepatic diseases mediated via oxidative stress. Reactive oxygen species can directly damage lipids, proteins or Deoxyribonucleic acid (DNA) and modulate intracellular signaling pathways. Due to the many limitations of already existing hypoglycemic agents, search for newer drugs with fewer side effects and lower cost is imminent [24]. Several researchers have reported that some plants possess antidiabetic properties and this justifies the use of herbs by rural dwellers in the management of diabetes mellitus [6, 11,25, 26, 27].

Chromolaena odorata is one of the medicinal plants that have served all through the ages as the mainstay in the treatment and preservation of human health. It's a tropical and subtropical species of flowering shrub in the family Asteraceae. It is native to America, from Florida and Texas in the United States [28]. It is a rapidly growing perennial herb that has been introduced to tropical Asia, West Africa, and parts of Australia. They are mostly spread by the wind, but can also cling to fur, clothes and machinery, enabling long distance dispersal. The plant can regenerate from the roots [29]. Chromolaena odorata contains carcinogenic pyrrolizidine alkaloids [30]. It is toxic to cattle [29]. The plant is larvicidal against all major mosquito vectors [31].

Chromolaena odorata has several local names. For instance, in mid-western Nigeria, it is called “Akintola” or “Awolowo”; in eastern Nigeria, it is called
several names among which are “Obialofulu” and “Queen Elizabeth” indicating that the spread of weed might have been widely noticeable during the period of the queen’s visit to Nigeria in 1956. There is no known local name for it in the Hausa language which probably is due to its scarcity in northern Nigeria [32].

Chromolaena odorata has been reported to have antispasmodic, antiprotozoal, antitrypanosomal, antibacterial and antihypertensive activities. It has also been reported to possess anti-inflammatory, astringent and diuretic activities [3]. In the south-eastern part of Nigeria, the leaves are used for wound dressing, skin infection and to stop bleeding. Some specific phenolic compounds have been isolated from the plant and the medicinal values of this plant is credited to these component phytochemicals such as alkaloids, tannins, flavonoids and other phenolic compounds, which produce a definite physiological action on the human body [3].

Streptozotocin (STZ) is widely used to induce diabetes in various laboratory animals as it is particularly toxic to the pancreatic insulin-producing beta cells in mammals [33]. Alloxan and streptozotocin are the most prominent diabetogenic chemicals in diabetic research. Both are cytotoxic glucose analogues and their mechanism of beta cell selective action is identical [33, 34]. Streptozotocin inhibits insulin secretion and causes a state of insulin-dependent diabetes mellitus. Both effects can be attributed to its acylating potency and beta cell specificity. STZ is transported into the cell by glucose transport protein GLUT2 but it is not recognized by other glucose transporters [33].

Most medicinal plants presently employed by local herbalists are used without much scientific information and evaluation of vital organs like liver. It is therefore important to access and document the ethnomedicinal claims of these medicinal plants. In view of the various traditional applications of Chromolaena odorata, scientific investigation will help in establishing its efficacy especially those which can be used in the treatment and management of several ailments. The aim of this research was to determine the effect of ethanol leaf extract of Chromolaena odorata on hepatic markers in streptozotocin induced diabetic wistar albino rats.

MATERIALS

Chemicals and Reagents

All chemicals and reagents used in this study were of analytical grade and standard. Commercial test kits were sourced from products of Randox, UK.

Collection of Biological Materials

The present study was carried out using the leaf of Chromolaena odorata and albino rats. Fresh leaves of Chromolaena odorata were collected from Abakaliki Local Government in Ebonyi State and was authenticated in the Herbarium Unit of Department of Applied Biology, Ebonyi State University, Abakaliki, Nigeria by Mr. Nwankwo Onyebuchi, a plant Taxonomist. Forty-Eight (48) albino wistar rats were purchased from the Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria. They were acclimatized for a period of two weeks prior to commencement of experiment. They were maintained at room temperature, 12hr day/night period and fed ad libitum on water and growers mash; weighed prior to commencement of experiment and daily till the end of the experiment.

METHODS

Preparation of Plant Material

Fresh leaves of Chromolaena odorata were harvested and washed under tap water to remove contaminants and air dried under shade for three weeks, after which it was milled to powder form using grinding machine.

Extraction of Plant Material

A known quantity, 500g of ground leaves of Chromolaena odorata were macerated in
1500ml of ethanol with thorough shaking at regular interval for 72h at room temperature (26-28°C). The resulting solution was filtered using Whatman No.1 filter paper. The filtrates were concentrated using rotary evaporator to obtain slurry of the extract. The semi-pastry extract was stored in the refrigerator and used for the study.

Determination of Liver Function Status

Serum Gamma-glutamyltransferase (γ-GGT) activity was determined as described by Szasz [35]. Aspartate Amino Transaminase (AST), Alanine Amino Transaminase (ALT) and Alkaline Phosphatase (ALP) activities were assayed using Reitman and Frankel [36] method. Bilirubin level was determined by the method of Jendrassik and Grof [37].

Experimental Design

Forty eight (48) Wistar albino rats were used in this study. They were randomly distributed into six (6) groups of 8 rats each. The treatment and blood glucose determination lasted for 21 days. All meals were stopped by 7pm on the 21st day. After an overnight fast, blood samples were collected from the animals following chloroform anaesthesia and sacrifice/opening up of the animals using syringes and needles via inferior vena cava and cardiac puncture, into already labelled K2 EDTA, plain and lithium heparin bottles without undue pressure to either the arm or the plunger of the syringe. The samples were mixed by gentle inversion. The samples in the lithium heparin and plain bottles were centrifuged at 5000r/min for 10mins to obtain plasma and serum. The plasma and serum supernatants were separated into sterile plain bottles and were used for biochemical assays.

Animal grouping

Group 1: (Positive control) Rats in this group were induced with diabetes without treatment and received 0.5ml of normal saline daily.

Group 2: (Standard control) Rats in this group were induced with diabetes and treated with 0.5mg/kg body weight of glibenclamide daily.

Group 3: (Negative control) Rats in this group were not induced with diabetes and were not treated but received 0.5 ml of normal saline daily.

Group 4: Diabetic rats treated with 250 mg/kg body weight of the crude ethanol leaf extract of *Chromolaena odorata* daily.

Group 5: Diabetic rats treated with 350 mg/kg body weight of the crude ethanol leaf extract of *Chromolaena odorata* daily.

Group 6: Diabetic rats treated with 450 mg/kg body weight of the crude ethanol leaf extract of *Chromolaena odorata* daily.

Induction of Diabetes

The baseline blood glucose levels were determined before the induction of diabetes. Rats were fasted overnight and experimental diabetes induced by intraperitoneal injection of streptozotocin (STZ) with a single dose of 70mg/kg body weight. STZ was dissolved in 0.1M citrate buffer at pH of 4.5. After three days, rats with blood glucose level greater than 250mg/dl that exhibit hyperglycemia were selected for the experiment. The Accu-Check one-touch blood glucose monitoring meter and test strips were used for the assay.

Statistical Analysis

Results were expressed as mean ± standard deviation (SD). Mean values were properly determined and compared using one-way analysis of variance (ANOVA) followed by Turkey’s post hoc test; significance was accepted at p<0.05. All statistical analysis was carried out using Graph Pad Prism version 5.00 for Windows.
RESULTS

Effect of Ethanol Leaf-Extract of *Chromolaena odorata* on Liver Function Parameters in STZ-induced Diabetic Albino Rats

STZ injection led to increase in activities of ALT, ALP, AST, GGT activities and bilirubin level. Treatment with graded doses of 250 mg/kg, 350mg/kg and 450mg/kg b.w of ethanol leaf extract of *Chromolaena odorata* produced significant decrease (p<0.05) in ALT, ALP, AST, GGT activities and bilirubin level compared with the positive control groups. Also, there were no significant differences (p>0.05) when group 3 rats (normal rats, negative control) and group 2 (treated with glibenclamide) were compared with groups 4-6 rats treated with graded doses of ethanol extract extracts group (Figure 1A-E).
Figure 1 (A-E): Effect of Ethanol Leaf-Extract of *Chromolaena odorata* on Liver Function Parameters in STZ-induced Diabetic Albino Rats (*n*=6). ‘#' represents significant difference (*p*<0.05) of positive control from treated groups. There were no significant differences (*p*>0.05) among treated groups but all were significantly different from positive control (bars without ‘#’).
Ugwu et al

Group 1: induced and treated with 0.5ml normal saline (positive control); Group 2: induced and treated with 0.5mg/kg of glibenclamide; Group 3: No induction nor treatment (Negative control); Group 4: diabetic rats treated with 250mg/kg of ethanol leaf-extract of Chromolaena odorata; Group 5: diabetic rats treated with 350mg/kg of ethanol leaf-extract of Chromolaena odorata; Group 6: diabetic rats treated with 450mg/kg of ethanol leaf-extract of Chromolaena odorata

DISCUSSION

Diabetes mellitus (DM) is a metabolic disorder that is characterized by high blood glucose level and derangement in vital organs of the body. Liver is an important organ involved in excretory, synthetic and metabolic functions and hence a target organ that needs to be check mated during treatment of DM. This study was designed to evaluate the effect of treating diabetic rats with graded doses of ethanol leaf extract of Chromolaena odorata on the liver. Streptozotocin (STZ) is a popular diabetogenic compound [38]. Expectedly, injection with STZ produced increase in ALT, ALP, AST, GGT activities and bilirubin level indicating hepatobiliary damage. Previous studies have reported increase in ALT, ALP, AST, GGT activities and bilirubin levels in rats injected with STZ [7, 16]. Interestingly, treatment of the diabetic rats with graded doses of 250 mg/kg, 350mg/kg and 450mg/kg b.w of ethanol leaf extract of Chromolaena odorata significantly decreased (p<0.05) ALT, ALP, AST, GGT activities and bilirubin levels in rats injected with STZ [7]. This result corroborates previous reports about the hepatoprotective effect of medicinal plants [9, 39, 10, 6, 40, 41, 42]. In the present study, the decreased activities of these liver enzymes were similar to the effects produced by a known standard drug (glibenclamide) in group 2 (standard control). This shows that the extract can be used to ameliorate hepatic damages caused by diabetes and its related diseases.

Liver is a vital organ and site of metabolism of xenobiotics and drugs. Therefore, liver malfunction will impair the function and metabolism of drugs and xenobiotics in the blood [43].

CONCLUSION

The results from this research indicated that ethanol leaf extract of Chromolaena odorata lowered the activities of liver enzymes and level of bilirubin in STZ-induced diabetic wistar albino rats. The findings in this study suggest that...
Ugwu et al

Chromolaena odorata ethanol root extract possess hepatoprotective potentials and hence can be used to ameliorate hepatic dysfunction-associated diseases. Further study is however advocated to unravel the mechanism of action of this plant.

REFERENCES

22. Mbaka, G. O., Adeyemi O.O. and Adesina S. A. Anti-diabetic activity of the seed extract of *sphenocentrum jollyanum* and morphological changes on pancreatic beta cells in alloxan-induced diabetic rabbits. *Journal*

