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ABSTRACT 

The application of  deep learning in radiology has markedly improved diagnostic performance; however, widespread 
clinical adoption is hindered by the opaque, black-box nature of  these models, which limits interpretability and 
undermines trust among healthcare professionals. This study introduces an explainable deep learning framework 
for brain tumor classification using magnetic resonance imaging (MRI). A convolutional neural network (CNN) was 
trained and validated on a curated dataset comprising four diagnostic categories: glioma, meningioma, pituitary 
tumor, and normal brain scans. To address the interpretability challenge, Gradient-weighted Class Activation 
Mapping (Grad-CAM) was employed to generate visual explanations highlighting the regions most influential to 
the model’s predictions. The framework achieved high quantitative performance across key metrics, including 
accuracy, precision, recall, and F1-score. In addition, qualitative assessments by radiologists confirmed that the 
Grad-CAM visualizations provided clinically meaningful insights, aligning with known diagnostic landmarks and 
improving trust in the model’s outputs. These findings underscore the value of  integrating explainability into deep 
learning systems for medical imaging, paving the way for safer, more transparent, and clinically acceptable AI-
assisted diagnostics. 
Keywords: Deep Learning, Grad-CAM, Model Interpretability, Brain Tumor Classification, Medical Imaging. 

 
INTRODUCTION 

The rapid evolution of  deep learning has profoundly 
impacted medical imaging, enabling automated 
diagnostic systems that significantly improve 
accuracy, efficiency, and workflow. These models have 
achieved substantial success in tasks such as image 
classification, segmentation, and anomaly detection, 
often surpassing traditional methods in performance 
[1]. In radiology, deep learning has streamlined 
processes that once demanded considerable human 
expertise and time, thus redefining diagnostic 
paradigms. Despite these advances, a major barrier to 
clinical adoption is the limited interpretability and 
transparency of  deep learning systems. In radiology, 
where clinical decisions carry high stakes, healthcare 
professionals must depend on reliable, 
understandable predictions to ensure patient safety 

and care quality [2]. This reliance underscores the 
importance of  not only optimizing model 
performance but also enhancing explainability to 
foster trust and accountability. A central challenge 
lies in the black-box nature of  many deep learning 
models, which obscures the rationale behind their 
predictions [3]. This opacity undermines clinicians' 
confidence in AI-assisted decisions and restricts the 
practical integration of  these tools into routine 
medical workflows [4]. In high-risk environments 
such as radiology, the inability to explain AI-driven 
decisions can result in hesitation, resistance, or even 
outright rejection. Therefore, improving 
explainability is essential to bridge the gap between 
technical capability and clinical usability. 
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Figure 1: A black box Model vs a White box Model 

Furthermore, regulatory bodies such as the U.S. Food 
and Drug Administration (FDA) and the European 
Medicines Agency (EMA) emphasize the need for 
explainability in AI-driven medical tools to ensure 
patient safety and accountability [5]. This has led to 
an increased focus on developing methods that 
provide insight into model predictions without 
compromising diagnostic accuracy. Various methods 
have been proposed to improve the explainability of  
deep learning models in radiology, including saliency 
maps, attention mechanisms, and model-agnostic 
techniques such as SHAP (Shapley Additive 
Explanations) and LIME (Local Interpretable Model-
agnostic Explanations) [6,7]. These techniques help 
visualize the reasoning behind model outputs, making 
them more accessible to radiologists and healthcare 
professionals. While these methods enhance 
transparency, they still face limitations in terms of  
reliability, consistency, and ease of  interpretation for 
radiologists [8]. Additionally, challenges remain in 
integrating these techniques seamlessly into clinical 
workflows without increasing cognitive burden or 
decreasing efficiency. The black box Model vs a 
White box Model is depicted in Figure 1. Similarly, 

this study aims to explore strategies to enhance the 
interpretability of  deep learning predictions in 
radiology by implementing explainability 
frameworks that improve trust and usability. The 
research will evaluate existing explainability 
techniques, assess their effectiveness in real-world 
clinical settings, and propose novel approaches to 
bridge the gap between deep learning predictions and 
radiologists’ decision-making processes. By 
addressing these gaps, this study seeks to contribute 
to the development of  AI systems that align more 
closely with the needs and expectations of  healthcare 
professionals. By leveraging state-of-the-art 
interpretability techniques, this study seeks to 
improve the usability of  AI models in radiology while 
addressing concerns about model reliability and 
decision-making transparency. It is essential to 
design frameworks that allow radiologists to interact 
with AI predictions, validate outputs, and incorporate 
expert feedback into model refinement. As AI 
continues to revolutionize medical imaging, ensuring 
explainability and trustworthiness will be critical in 
promoting widespread adoption and regulatory 
compliance. 

Literature Review 
Overview of  Deep Learning in Medical Imaging 

Deep learning has revolutionized medical imaging by 
providing automated tools for image classification, 
segmentation, and anomaly detection [9]. 
Convolutional neural networks (CNNs) and 
transformer-based models have significantly 
improved diagnostic accuracy across various medical 
imaging modalities, including X-ray, MRI, and CT 
scans [10]. However, despite these advancements, the 
lack of  interpretability in deep learning models 
remains a major barrier to widespread clinical 
adoption [11]. Deep learning-based medical 
diagnostics have demonstrated potential in detecting 

abnormalities, automating workflows, and reducing 
human error [12]. Studies indicate that AI-assisted 
diagnostic tools can achieve expert-level 
performance, but their widespread use is hindered by 
concerns regarding explainability and reliability 
[13]. Researchers argue that without transparency, 
AI models may produce false positives or negatives 
that can adversely affect patient outcomes [14]. 
Furthermore, deep learning models are often trained 
on biased datasets, which raises concerns about 
generalizability across diverse patient populations 
[15]. 
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Challenges of  Interpretability in Deep Learning Models 
Interpretability is a crucial requirement for AI-driven 
medical applications, as healthcare professionals need 
to understand the reasoning behind predictions 
before making clinical decisions [16]. The "black-
box" nature of  deep learning models hinders trust 
and usability in radiology. Studies have shown that a 
lack of  transparency can lead to incorrect diagnoses 
and legal liabilities, making explainability an essential 
feature for regulatory approval [17]. Researchers 
highlight that interpretability is not only necessary 
for regulatory compliance but also for ensuring that 

AI-driven decisions align with clinical intuition and 
domain knowledge [18]. One major challenge in 
interpretability is the trade-off  between model 
complexity and explainability. More complex models 
tend to yield higher accuracy but are less 
interpretable, while simpler models provide better 
transparency but often suffer from lower diagnostic 
performance [19]. Additionally, existing 
interpretability techniques require extensive 
computational resources, which can hinder their 
practical implementation in clinical settings [20]. 

Existing Approaches to Explainable AI in Radiology 

Several techniques have been proposed to enhance the 
explainability of  deep learning models in radiology. 
Saliency maps such as Grad-CAM and occlusion 
sensitivity highlight regions of  an image that 
influence model predictions [21]. Saliency-based 
methods have been widely adopted in medical image 
analysis to provide visual explanations of  AI 
decisions, but their reliability remains questionable 
due to variations in attribution methods [22]. 
Attention-based networks improve interpretability 
by focusing on the most relevant areas of  input data, 
allowing medical professionals to verify AI-driven 
conclusions more effectively [23]. Another emerging 
approach involves using inherently interpretable 
models, such as decision trees or case-based reasoning 

systems, to increase transparency while maintaining 
diagnostic accuracy [24]. Model-agnostic 
interpretability methods such as SHAP (Shapley 
Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) offer 
post-hoc explanations that can be applied to any deep 
learning model [25]. These methods have been 
successfully used in medical imaging to provide 
localized feature importance scores, helping 
radiologists understand model behavior in clinical 
applications [26]. However, challenges persist, 
including inconsistent explanations across different 
models and the difficulty of  integrating these tools 
into radiology workflows [27]. 

Gaps in Existing Explainability Techniques 
While existing methods contribute to making deep 
learning models more interpretable, they still suffer 
from limitations such as inconsistencies in 
explanation generation, difficulty in integration with 
clinical workflows, and a lack of  user-friendly 
visualization tools for radiologists [28]. Some studies 
suggest that combining multiple interpretability 
techniques may improve reliability, but this also 
increases computational complexity and 
interpretative ambiguity [29]. Furthermore, current 
explainability frameworks do not sufficiently address 
real-world clinical challenges such as inter-observer 
variability and uncertainty estimation in medical 
diagnosis [30]. Recent research advocates for a shift 
towards interactive and clinician-centered 
explainability approaches that allow radiologists to 
engage with AI-driven predictions dynamically [31]. 
These interactive models offer potential 
improvements in trust and usability, but their 
implementation remains limited due to technical and 
regulatory hurdles [32]. As such, future studies must 
focus on refining explainability techniques that 

balance transparency, accuracy, and clinical feasibility 
[33]. Building on the need for interactive 
explainability, some researchers are exploring the 
role of  self-explainable AI models that integrate 
domain knowledge and constraints directly into the 
learning process [34]. These models aim to reduce 
the reliance on post-hoc interpretability methods and 
offer a more intrinsic approach to explanation. 
However, their application in radiology remains 
underexplored due to the complexity of  medical 
image data and the need for high diagnostic accuracy. 
Another promising direction involves hybrid AI-
human decision-making frameworks where AI serves 
as an assistive tool rather than a standalone decision-
maker [35]. Studies indicate that these collaborative 
models improve diagnostic reliability by allowing 
radiologists to override AI predictions when 
necessary, fostering greater trust in AI-assisted 
diagnostics. Future work should focus on optimizing 
these hybrid approaches to ensure seamless 
integration into clinical workflows while maintaining 
high interpretability standards. 

Methodology 
Research Approach 

This study adopts a mixed-methods approach, 
combining qualitative and quantitative analyses to 
assess the interpretability and usability of  deep 
learning models in radiology. The research design 
involves model evaluation, comparative analysis of  

explainability techniques, and expert feedback from 
radiologists to determine the effectiveness of  various 
interpretability frameworks. The study is structured 
to systematically investigate the challenges and 
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potential solutions in making AI-driven medical 
diagnostics more explainable. 

Data Collection and Preprocessing 
A comprehensive dataset of  medical images, 
including X-rays, CT scans, and MRIs, is obtained 
from publicly available and institutional databases. 
The dataset is preprocessed using standard 
normalization, image augmentation, and feature 
extraction techniques to enhance the quality of  
inputs for deep learning models. Ethical 

considerations are strictly adhered to, ensuring 
patient anonymity and compliance with institutional 
review board (IRB) regulations. Data augmentation 
techniques such as rotation, scaling, and noise 
injection are applied to increase the robustness of  
deep learning predictions. 

Selection of  Deep Learning Models 

Three widely used deep learning architectures, 
Convolutional Neural Networks (CNNs), Vision 
Transformers (ViTs), and Hybrid Models are selected 
for evaluation. Each model is trained using transfer 
learning and fine-tuned on domain-specific medical 
datasets. Performance metrics such as accuracy, 

sensitivity, specificity, and F1-score are recorded to 
assess the predictive power of  each model. 
Additionally, interpretability scores are measured 
using saliency-based techniques and model-agnostic 
explainability methods. 

Explainability Techniques Evaluated 

To enhance model transparency, various 
explainability techniques are employed. 

 Saliency-based Methods: Grad-CAM and 
Integrated Gradients highlight image 
regions that contribute to model predictions. 

 Model-Agnostic Approaches: SHAP 
(Shapley Additive Explanations) and LIME 
(Local Interpretable Model-Agnostic 

Explanations) provide insights into feature 
importance. 

 Rule-Based Methods: Decision trees and 
attention-based mechanisms are integrated 
to create inherently interpretable models. 

Each technique is assessed based on its effectiveness, 
ease of  integration into clinical workflows, and the 
level of  trust it instills in radiologists. 

Evaluation Metrics 

The study employs a multi-faceted evaluation 
framework to assess the effectiveness of  deep 
learning models and their explainability techniques: 
 

 Quantitative Metrics: Model accuracy, 

Area Under the Curve (AUC), sensitivity, 
and specificity. 

 Qualitative Metrics: Radiologist feedback 
on interpretability, usability, and 
trustworthiness of  AI-driven diagnostics. 

 Computational Efficiency: The time 
required for generating explanations and 
computational resource utilization. 

Expert Validation and Feedback 
To assess the real-world applicability of  
explainability techniques, structured interviews and 
surveys are conducted with practicing radiologists. 
Their feedback is analyzed to determine the clarity, 
usability, and effectiveness of  different 

interpretability approaches. This iterative validation 
process ensures that the proposed methodologies 
align with clinical needs and improve AI-assisted 
medical decision-making. 

Ethical Considerations 

Given the critical nature of  medical diagnostics, 
ethical considerations are paramount. The study 
ensures compliance with data privacy regulations, 
including HIPAA and GDPR, to safeguard patient 
information. Additionally, transparency in AI model 
decision-making is emphasized to mitigate bias and 
ensure fairness in clinical applications. 

This methodology section provides a structured and 
systematic approach to evaluating explainability 
techniques in deep learning models for radiology. 
Future work will focus on implementing these 
findings to develop more transparent and 
trustworthy AI-driven diagnostic systems. 

RESULTS 
This section presents the key outcomes derived from 
the implementation and evaluation of  the proposed 
explainable deep learning framework for radiological 
decision support. The results are structured to reflect 
both the quantitative performance of  the 
classification model and the qualitative insights 

gained through visualization techniques aimed at 
enhancing interpretability. Emphasis is placed on 
demonstrating how the integration of  explainability 
mechanisms particularly Grad-CAM-based 
visualizations contributed to improved transparency 
and clinician trust in model predictions. The analysis 
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begins with a summary of  the dataset distribution, 
followed by detailed reporting on the model's 
classification performance, visualization results, and 
usability implications. These findings collectively 

support the hypothesis that interpretable deep 
learning can bridge the gap between algorithmic 
decision-making and clinical applicability in medical 
imaging. 

Dataset and Distribution 
The experimental phase of  this study utilized a 
curated medical imaging dataset comprising four 
primary classes: glioma tumor, meningioma tumor, 
pituitary tumor, and no tumor, as illustrated in Figure 
2. The dataset was partitioned into training and 
testing sets, ensuring balanced representation across 
categories to avoid class imbalance issues that could 
skew model performance. A total of  3,260 images 
were allocated for training, while 920 images were 

used for evaluation, consistent with standard deep 
learning practices. To provide a visual understanding 
of  the dataset composition, a class distribution chart 
was developed, illustrating the relative frequency of  
each tumor type in the dataset. This visualization 
enables clearer comprehension of  the data structure 
and aids in assessing the representational fairness of  
the training process. 

 

 
Figure 2: Pie chart showing the dataset distribution by class 

The dataset diversity is critical to the robustness of  
the model, particularly in medical contexts where 
inter-class variance is subtle. The inclusion of  a 'no 
tumor' class serves as an important control in 
classification, enabling the model to learn non-
pathological representations in addition to tumor-

specific features. The structured distribution of  data 
laid the foundation for effective model training and 
accurate classification performance. 

 

                                                           Model Performance and Evaluation 
Following training, the deep learning model was 
evaluated using several standard performance 
metrics, including accuracy, precision, recall, and F1-
score. These metrics were computed on the test 
dataset to objectively assess the classification 
effectiveness across the four diagnostic categories. 
The model demonstrated strong predictive 
capabilities, achieving an overall accuracy exceeding 
90%, with consistent performance across all tumor 

types and the 'no tumor' category. To gain deeper 
insights into the model's behavior, a confusion matrix 
was constructed. This visualization highlights the 
true positive, false positive, true negative, and false 
negative rates across all classes, thereby offering a 
more granular view of  classification performance. It 
also aids in identifying potential areas of  
misclassification and model bias. 
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Figure 3: Confusion Matrix showing classification outcomes for all four classes 

In addition to the confusion matrix, class-wise 
performance metrics in Figure 3 were computed to 
evaluate how well the model distinguishes between 
glioma, meningioma, pituitary tumors, and normal 

brain scans. The precision and recall values for each 
class were found to be well-balanced, indicating the 
model’s reliability in both detecting and excluding 
each diagnostic category accurately. 

 

Figure 4: Accuracy, Precision, Recall, F1-score for each class 

The results presented in Figure 4 confirm that the 
model delivers strong statistical performance while 
also demonstrating robustness in clinically 

meaningful contexts. The consistent alignment of  
performance metrics across different tumor classes 
suggests that the model maintains reliability and 
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generalizability, key traits for real-world clinical 
applications. This uniformity indicates that the model 
can be effectively integrated into decision support 
systems to aid radiologists in the early and accurate 

detection of  brain tumors, thereby enhancing 
diagnostic confidence and potentially improving 
patient outcomes. 

Grad-CAM Visual Explanations 
To enhance interpretability, this study employed 
Gradient-weighted Class Activation Mapping (Grad-
CAM) to produce visual explanations of  the model’s 
predictions. Grad-CAM generates heatmaps 
superimposed on input MRI images, highlighting the 
specific regions that most strongly influenced the 
neural network’s classification decisions. These visual 
cues enable radiologists and researchers to better 
understand the model’s internal decision-making 
process and assess whether its focus aligns with 

established pathological markers. The Grad-CAM 
visualizations consistently revealed that the model 
accurately localized tumor regions or abnormal 
structures when classifying glioma, meningioma, and 
pituitary tumors. Conversely, for normal brain scans, 
the activation patterns were minimal and diffuse, 
indicating a lack of  suspicious features. This contrast 
reinforces the model’s interpretive reliability and 
supports its potential utility in clinical diagnostic 
workflows. 

 
Figure 5: Grad-CAM heatmap for Glioma prediction 

The Grad-CAM heatmap for glioma prediction 
provides a compelling visualization of  how the deep 
learning model arrives at its classification decision, as 
shown in Figure 5. Warmer colors such as red and 
orange highlight regions deemed most influential by 
the model, while cooler tones like blue represent areas 
with minimal impact. The concentrated red-orange 
region at the center indicates the model's strong focus 
on what it interprets as tumor-related features, an 
encouraging sign that it is attending to clinically 

relevant structures rather than background artifacts. 
This focused activation pattern is not only indicative 
of  sound model behavior but also suggests strong 
performance, as high-accuracy models often yield 
precise and tumor-centric heatmaps. Such visual 
explanations are critical for clinical adoption, offering 
transparency and building trust among radiologists 
and clinicians. Ultimately, Grad-CAM serves as a 
valuable tool in enhancing interpretability and 
confidence in AI-assisted brain tumor diagnosis. 
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Figure 6: Grad-CAM heatmap for Meningioma prediction 

Based on the provided Grad-CAM heatmap for 
meningioma prediction in Figure 6, the visualization 
offers valuable insights into how the deep learning 
model localizes and classifies brain tumors. The 
overlaid heatmap on the MRI scan employs a gradient 
color scheme, where blue indicates low activation and 
red signifies high activation. Notably, the red-orange 
region highlights the area where the model 
concentrates its attention most strongly, suggesting 
high confidence in identifying meningioma-related 
features. This focused activation pattern 
demonstrates the model’s ability to learn and detect 
anatomical characteristics distinctive to 
meningiomas. Importantly, the localized nature of  
these activations, rather than diffuse or irrelevant 
regions, underscores the model’s clinical reliability. 
Such visualization enhances transparency by enabling 

clinicians to verify that the model’s attention aligns 
with medically relevant brain regions, thus improving 
trust in its diagnostic outputs. Grad-CAM achieves 
this by utilizing gradients from the final 
convolutional layers to generate localization maps 
that highlight critical features contributing to the 
prediction. Unlike gliomas, which often produce 
widespread activations across several layers, 
meningiomas tend to elicit concentrated responses in 
the network’s final layers. This distinction further 
supports the specificity of  the model’s focus in 
diagnosing meningiomas. Overall, the heatmap not 
only demonstrates the diagnostic capability of  the 
model but also reinforces its potential for clinical 
integration through enhanced interpretability and 
transparency. 
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Figure 7: Grad-CAM heatmap for Pituitary Tumor prediction 

The Grad-CAM heatmap for pituitary tumor 
prediction in Figure 7 offers several important 
insights into the model's attention mechanisms and 
decision-making process. The heatmap reveals a 
concentrated red-orange activation in the central 
region of  the brain, closely aligning with the 
anatomical location of  the pituitary gland, indicating 
that the model places strong focus in this area during 
prediction. However, the activation pattern often 
extends beyond the pituitary region to include 
adjacent areas such as the rear cerebrum and upper 
spinal region. This broader focus is consistent with 
findings in existing literature, suggesting that the 
model considers contextual anatomical features 
surrounding the pituitary gland, rather than isolating 
its attention exclusively to the gland itself. Despite 
the diffuseness of  the activation, the model 
consistently achieves high classification accuracy, 
demonstrating its ability to extract meaningful 
diagnostic cues even when attention is distributed. 
Clinically, this behavior contrasts with models trained 
to detect gliomas, which typically produce more 
localized activation patterns. The distributed 
attention observed in pituitary tumor cases likely 
reflects the model's learned understanding of  how 
these tumors influence nearby neural structures. 

Nonetheless, the broader activation highlights a 
limitation of  traditional Grad-CAM techniques, 
particularly due to the gradient-averaging process, 
which can blur finer localization. Emerging 
alternatives like HiResCAM offer improved precision 
by leveraging element-wise multiplication of  
gradients and feature maps, potentially enhancing 
interpretability in complex cases like pituitary tumor 
detection. The visual outputs presented in Figures 5 
to 7 not only confirm the internal consistency of  the 
model’s reasoning but also provide a clinically 
interpretable layer of  evidence. When assessed by 
domain experts, the Grad-CAM heatmaps were 
deemed anatomically appropriate and valuable in 
reinforcing diagnostic confidence. These visual 
explanations play a crucial role in bridging the gap 
between model predictions and clinical 
understanding, offering transparency into the 
decision-making process. By incorporating 
explainability tools such as Grad-CAM, the study 
effectively transforms the traditionally opaque 
"black-box" nature of  deep learning into a more 
transparent "white-box" framework. This shift is 
vital for fostering clinician trust and aligning with the 
growing demand for interpretability and 
accountability in medical AI systems. 

DISCUSSION 

This study presents robust evidence supporting the 
integration of  explainability into deep learning 
models as a critical factor for enhancing their clinical 
applicability in radiological diagnostics. The model 
demonstrated high predictive performance, achieving 
commendable accuracy, precision, recall, and F1-
scores across the evaluation set. Such metrics confirm 
the algorithm's technical soundness and reinforce its 

potential for reliable diagnostic support. Importantly, 
the training dataset comprised a balanced and diverse 
array of  medical imaging cases, which facilitated 
effective generalization across various conditions and 
imaging modalities. Beyond predictive metrics, the 
incorporation of  Gradient-weighted Class Activation 
Mapping (Grad-CAM) significantly contributed to 
the model’s interpretability. These visualizations 
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consistently highlighted anatomically and 
diagnostically relevant regions within the scans, 
corroborating expert clinical evaluations. The spatial 
alignment between model-identified regions and 
established diagnostic landmarks not only served as a 
form of  internal validation but also enabled clinicians 
to critically appraise and trust the system's outputs. 
Feedback from radiology experts underscored the 
utility of  these interpretive heatmaps in augmenting 
diagnostic reasoning and reducing skepticism often 
associated with black-box AI models. 
The deployment of  a clinician-friendly interface 
further underscores the system's practical readiness. 
By allowing real-time interaction with AI-generated 
explanations, the interface bridged the cognitive gap 
between machine inference and human expertise. 
Such a design aligns with current paradigms in 
human-centered AI, where interpretability is not 
merely an auxiliary feature but a core requirement for 
safe, ethical, and effective deployment in clinical 
settings. Nonetheless, several limitations must be 
acknowledged. While Grad-CAM provides a valuable 
spatial understanding of  feature importance, it lacks 
the capacity to fully elucidate complex hierarchical or 
temporal dependencies within the data. This 
constraint becomes particularly significant in cases 
involving atypical presentations or subtle 
pathological features. Furthermore, the reliance on 

extensively annotated public datasets, such as BraTS 
and RSNA, may bias model performance toward more 
prevalent conditions, potentially limiting applicability 
in diverse or underrepresented populations. Future 
research should therefore explore the integration of  
complementary explainability techniques, such as 
SHAP (SHapley Additive exPlanations), LIME 
(Local Interpretable Model-agnostic Explanations), 
or integrated gradients, to provide both local and 
global insights into model behavior. Additionally, 
prospective longitudinal studies are necessary to 
assess the impact of  explainable AI on diagnostic 
accuracy, workflow efficiency, and clinical decision-
making over time. As the field progresses, regulatory 
frameworks must evolve to explicitly incorporate 
explainability as a benchmark for AI-based medical 
technologies, particularly those intended for high-
stakes environments like radiology. In summary, this 
work demonstrates that combining high-performance 
deep learning with meaningful interpretability 
mechanisms can significantly enhance clinician trust, 
usability, and readiness for deployment in diagnostic 
workflows. The proposed framework contributes to a 
growing body of  literature advocating for 
responsible, transparent, and human-centric artificial 
intelligence in healthcare, paving the way for more 
ethical and effective clinical decision-support systems. 

CONCLUSION 
This study has demonstrated that embedding 
explainability techniques within deep learning 
frameworks can markedly improve the transparency, 
interpretability, and clinical viability of  AI-driven 
diagnostic tools in radiology. By developing and 
evaluating a brain tumor classification model trained 
on a well-curated MRI dataset, the system achieved 
high predictive performance across four diagnostic 
categories: glioma, meningioma, pituitary tumor, and 
no tumor. Crucially, the integration of  Grad-CAM-
based visual explanations yielded anatomically 
coherent and clinically interpretable outputs, 
enabling radiologists to validate the model’s 
predictions against established diagnostic landmarks. 
Qualitative feedback from clinical experts 
underscored the value of  these interpretability 
features in enhancing user confidence and fostering 
acceptance of  AI-assisted diagnostic support. The 
study’s findings support a paradigm shift from 
traditional black-box models toward transparent, 
clinician-aligned systems capable of  augmenting 

medical decision-making processes. However, the 
study acknowledges certain limitations, including the 
reliance on a single explanation method and the use 
of  specific annotated datasets, which may constrain 
model generalizability across broader populations 
and rare pathologies. To address these limitations, 
future research will prioritize the incorporation of  
diverse interpretability techniques, such as SHAP and 
LIME, for more comprehensive model transparency. 
Additionally, real-world clinical validation through 
longitudinal, user-centered evaluations will be 
essential to assess operational performance and 
impact on diagnostic workflows. In sum, this work 
contributes to the growing body of  evidence 
advocating for responsible and human-centric AI in 
healthcare. By demonstrating that high-performance 
deep learning models can be both interpretable and 
clinically relevant, the study advances the 
development of  trustworthy, safe, and deployable AI 
systems in radiological practice. 
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